National Repository of Grey Literature 8 records found  Search took 0.00 seconds. 
Preparation of nanoparticles and nanofibers with antimicrobial components
Kubišová, Veronika ; Slaninová, Eva (referee) ; Skoumalová, Petra (advisor)
This thesis addresses the problem of inadequate current wound therapy and presents a solution in the form of nanomaterial-based wound dressings (coverings). Specifically, it focuses on the development and characterization of various nanofibrous materials with integrated liposome particles that could serve as a source of therapeutic agents and be useful specifically in the field of a wound therapy. The review in the introductory part of the thesis first focused on the mentioned problem, which describes the shortcomings of existing conventional dressing materials. A description of human skin from an anatomical and functional point of view was not omitted, nor was the wound healing process itself. Different types of covering materials were also presented. However, a large part was focused on nanomaterials and their use in the field of the skin wound therapy. The nanomaterials mentioned were mainly liposome particles and nanofibres, as the experimental part of the work was focused on these structures. The description dealt with the characterization of these structures as well as the biopolymers used for their preparation. However, the aim was to prepare nanofibers with liposome content, so the method of forming such systems was described. Various therapeutic agents are also an integral part of the covering materials, especially those that suppress the development of infection and reduce wound pain; therefore, the search focused on the antibiotic ampicillin and the analgesic ibuprofen. The experimental part was devoted to the actual production of nanofibers with liposomes and also to the qualitative demonstration of the presence of liposomes in electrostatically prepared nanofibers. The selected polymeric components of these systems were polyhydroxybutyrate (PHB) and gelatine. However, the nanofibers and liposome particles (as well as combined liposomes with PHB) were first prepared in their own form and characterized mainly in terms of the gradual release of the drug substances. The results obtained were then compared with those of therapeutic drug delivery via combined nanofibrous structures with liposomes. For these combined structures, the aim was to achieve synergy in drug delivery between these systems. The aim of this work was to create a biomaterial covering with the controlled drug release. The drugs contained in these materials were the aforementioned ampicillin and ibuprofen. An important part of the work was then to determine the safety of the prepared materials which were tested for cytotoxicity, where the tests performed were MTT test and LDH test. And the actual wound healing ability of the nanofibers was then monitored in a scratch test or a "wound healing" test. At the end of the paper, recommendations for future work on this topic are given.
Wound dressing nanofibers mats fabricated from nanocomposite material
Čileková, Marta ; Pavliňák,, David (referee) ; Abdellatif, Abdelmohsan (advisor)
Boli pripravené kryty rán na bázi prírodných látok polyvinyl alcohol/ hyaluronan/ strieborné nanočastice (PVA/ HA/ Ag-NPs). Hyaluronan bol použitý ako redukčné a stabilizačné činidlo pre syntézu nanočastíc striebra. Pri príprave Ag-NPs boli testované viaceré parametre ako koncentrácia dusičnanu strieborného ako zdroja Ag-NPs (0,01; 0,1;0,5;1 M), koncentrácia kyseliny hyalurónovej (1,2 %) a jej rozdielna molekulová hmotnosť. Kryty rán z nanovlákien boli pripravené pomocou techniky electro-spinning z roztokov líšiacich sa pomerom PVA a HA/Ag-NPs (100; 90/10; 80/20; 60/40; 50/50). Vlastnosti nanokompozitu HA/Ag-NPs boli hodnotené pomocou TEM, reológie, DLS, XRD, UV/Vis spektroskopie a kryty rán boli charakterizované pomocou SEM, TGA, FTIR a ťahovej skúšky.
Preparation and characterization of modern wound covers
Balášová, Patricie ; Pernicová, Iva (referee) ; Skoumalová, Petra (advisor)
This diploma thesis is focused on the study of bioactive wound dressings. During the thesis, hydrogel, lyophilized and nanofiber wound dressings were prepared. Hydrogel and lyophilized wound dressings were prepared on basis of two polysaccharides – alginate and chitosan. Nanofiber wound dressings were prepared by spinning polyhydroxybutyrate. All prepared wound dressings were enriched with bioactive substances, which represented analgesics (ibuprofen), antibiotics (ampicillin) and enzymes (collagenase). Into hydrogel and lyophilized wound dressings were all the mentioned active substances incorporated, whereas nanofiber wound dressings were only with ibuprofen and ampicillin prepared. The theoretical part deals with the anatomy and function of human skin. There was explained the process of wound healing and also there were introduced available modern wound dressings. The next chapter of the theoretical part deals with materials for preparing wound dressings (alginate, chitosan, polyhydroxybutyrate) and with active substances, which were used during the experimental part of this thesis. In the theoretical part, the methods of preparation of nanofiber wound dressings and also the methods of cytotoxicity testing used in this work were presented. The first part of the experimental part of this thesis was focused on preparing already mentioned wound dressings. Then, their morphological changes over time and also the gradual release of incorporated active substances into the model environment were monitored. The gradual release of ampicillin was monitored not only spectrophotometrically, but also by ultra-high-performance chromatography. In wound dressings, in which collagenase was incorporated, was also the final proteolytic activity of this enzyme monitored. The effect of the active substances was observed on three selected microorganisms: Escherichia coli, Staphylococcus epidermidis and Candida glabrata. The cytotoxic effect of the active substances on the human keratinocyte cell line was monitored by MTT test and LDH test. A test for monitoring the rate of wound healing – a scratch test – was also performed.
Preparation and characterization of modified polysaccharide hydrogels for medical applications
Poštulková, Hana ; Částková, Klára (referee) ; Lehocký,, Marián (referee) ; Vojtová, Lucy (advisor)
Tato dizertační práce se zaměřuje na komplexní charakterizaci přirozeně nerozpustného polysacharidu Gum Karaya (GK), aby tak přispěla k poznaní tohoto dosud málo prostudovaného biomateriálu. Kromě převádění GK do rozpustného stavu, které bylo studováno při různých podmínkách, tato práce představuje nový hydrogel založený na unikátní kombinaci materiálů polysacharidu Gum Karaya a proteinu Silk Fibroin. Tento přístup umožňuje využití specifických vlastností každého jednotlivého materiálu v daném hydrogelovém systému a také studium jejich vzájemných interakcí. Při přípravě hydrogelu nebyla použita chemická síťující činidla, příprava byla založena pouze na fyzikálním síťovaní systému. Hydrogely byly podrobeny analýze pro zjištění chemicko-fyzikálních a biologických vlastností. Studie kožních buněk keratinocytů v kontaktu s připravenými hydrogely naznačuje dobré biokompatibilní vlastnosti hydrogelů a nízkou adhezi mezi buňkami a připraveným materiálem. Dále bylo zjištěno, že GK a její směs s dalším biopolymerem vykazují bakteriostatické vlastnosti proti vybraným gram-pozitivním mikroorganismům, ale baktericidní vlastnosti nebyly pozorovány. Výsledky a pozorování získané během této práce vedou k závěru, že polysacharid Gum Karaya a z něho připravené hydrogely mají potenciál pro použití v aplikacích regenerativní medicíny, například jako hydrogely pro léčbu popálenin.
Changes in the manner of dressing of surgical wounds in the last 30 years
SPILKOVÁ, Eliška
Surgical wound care - dressing is a set of activities that favorably affect the healing process. The course of dressing under aseptic conditions is important to avoid infection in the wound and unpleasant complications. The aim of this diploma thesis is to analyze the changes in the way surgical wounds are used, especially in the last three decades. In connection with the analysis of the text, a research question was asked: How has the method of dressing surgical wounds changed in the last 30 years? We set 5 hypotheses. H1: nurses who have been in practice for more than 10 years prefer sterile devices stored in containers to wound dressings over nurses who have been in practice for less than 10 years. H2: Nurses who have been in practice for more than 10 years prefer the no-dose system more often than nurses who have been in practice for less than 10 years. H3: Nurses who have been in practice for more than 10 years have seen more changes in the method of dressing in the last 30 years than nurses who have been in practice for less than 10 years. H4: Nurses who have been in practice for more than 10 years claim that there have been no changes in the disinfectant and treatment solutions used for dressings during their practice. H5: From the point of view of nurses who have been in practice for more than 10 years, wound dressings are performed more aseptically now than 30 years ago. The empirical part of this diploma thesis was processed on the basis of qualitative and quantitative research. Data collection was performed through a questionnaire and a semi-structured interview. After saturating the answers, a total of 10 interviews and 272 questionnaires were included in the empirical part of this work. The results of the research show that the main changes that have occurred in the last three decades include changes in medical and disinfectant solutions, wound dressings, sterilization packaging, sterile material handling system, wound dressings used and, last but not least, wound healing .
Preparation of nanoparticles and nanofibers with antimicrobial components
Kubišová, Veronika ; Slaninová, Eva (referee) ; Skoumalová, Petra (advisor)
This thesis addresses the problem of inadequate current wound therapy and presents a solution in the form of nanomaterial-based wound dressings (coverings). Specifically, it focuses on the development and characterization of various nanofibrous materials with integrated liposome particles that could serve as a source of therapeutic agents and be useful specifically in the field of a wound therapy. The review in the introductory part of the thesis first focused on the mentioned problem, which describes the shortcomings of existing conventional dressing materials. A description of human skin from an anatomical and functional point of view was not omitted, nor was the wound healing process itself. Different types of covering materials were also presented. However, a large part was focused on nanomaterials and their use in the field of the skin wound therapy. The nanomaterials mentioned were mainly liposome particles and nanofibres, as the experimental part of the work was focused on these structures. The description dealt with the characterization of these structures as well as the biopolymers used for their preparation. However, the aim was to prepare nanofibers with liposome content, so the method of forming such systems was described. Various therapeutic agents are also an integral part of the covering materials, especially those that suppress the development of infection and reduce wound pain; therefore, the search focused on the antibiotic ampicillin and the analgesic ibuprofen. The experimental part was devoted to the actual production of nanofibers with liposomes and also to the qualitative demonstration of the presence of liposomes in electrostatically prepared nanofibers. The selected polymeric components of these systems were polyhydroxybutyrate (PHB) and gelatine. However, the nanofibers and liposome particles (as well as combined liposomes with PHB) were first prepared in their own form and characterized mainly in terms of the gradual release of the drug substances. The results obtained were then compared with those of therapeutic drug delivery via combined nanofibrous structures with liposomes. For these combined structures, the aim was to achieve synergy in drug delivery between these systems. The aim of this work was to create a biomaterial covering with the controlled drug release. The drugs contained in these materials were the aforementioned ampicillin and ibuprofen. An important part of the work was then to determine the safety of the prepared materials which were tested for cytotoxicity, where the tests performed were MTT test and LDH test. And the actual wound healing ability of the nanofibers was then monitored in a scratch test or a "wound healing" test. At the end of the paper, recommendations for future work on this topic are given.
Preparation and characterization of modern wound covers
Balášová, Patricie ; Pernicová, Iva (referee) ; Skoumalová, Petra (advisor)
This diploma thesis is focused on the study of bioactive wound dressings. During the thesis, hydrogel, lyophilized and nanofiber wound dressings were prepared. Hydrogel and lyophilized wound dressings were prepared on basis of two polysaccharides – alginate and chitosan. Nanofiber wound dressings were prepared by spinning polyhydroxybutyrate. All prepared wound dressings were enriched with bioactive substances, which represented analgesics (ibuprofen), antibiotics (ampicillin) and enzymes (collagenase). Into hydrogel and lyophilized wound dressings were all the mentioned active substances incorporated, whereas nanofiber wound dressings were only with ibuprofen and ampicillin prepared. The theoretical part deals with the anatomy and function of human skin. There was explained the process of wound healing and also there were introduced available modern wound dressings. The next chapter of the theoretical part deals with materials for preparing wound dressings (alginate, chitosan, polyhydroxybutyrate) and with active substances, which were used during the experimental part of this thesis. In the theoretical part, the methods of preparation of nanofiber wound dressings and also the methods of cytotoxicity testing used in this work were presented. The first part of the experimental part of this thesis was focused on preparing already mentioned wound dressings. Then, their morphological changes over time and also the gradual release of incorporated active substances into the model environment were monitored. The gradual release of ampicillin was monitored not only spectrophotometrically, but also by ultra-high-performance chromatography. In wound dressings, in which collagenase was incorporated, was also the final proteolytic activity of this enzyme monitored. The effect of the active substances was observed on three selected microorganisms: Escherichia coli, Staphylococcus epidermidis and Candida glabrata. The cytotoxic effect of the active substances on the human keratinocyte cell line was monitored by MTT test and LDH test. A test for monitoring the rate of wound healing – a scratch test – was also performed.
Wound dressing nanofibers mats fabricated from nanocomposite material
Čileková, Marta ; Pavliňák,, David (referee) ; Abdellatif, Abdelmohsan (advisor)
Boli pripravené kryty rán na bázi prírodných látok polyvinyl alcohol/ hyaluronan/ strieborné nanočastice (PVA/ HA/ Ag-NPs). Hyaluronan bol použitý ako redukčné a stabilizačné činidlo pre syntézu nanočastíc striebra. Pri príprave Ag-NPs boli testované viaceré parametre ako koncentrácia dusičnanu strieborného ako zdroja Ag-NPs (0,01; 0,1;0,5;1 M), koncentrácia kyseliny hyalurónovej (1,2 %) a jej rozdielna molekulová hmotnosť. Kryty rán z nanovlákien boli pripravené pomocou techniky electro-spinning z roztokov líšiacich sa pomerom PVA a HA/Ag-NPs (100; 90/10; 80/20; 60/40; 50/50). Vlastnosti nanokompozitu HA/Ag-NPs boli hodnotené pomocou TEM, reológie, DLS, XRD, UV/Vis spektroskopie a kryty rán boli charakterizované pomocou SEM, TGA, FTIR a ťahovej skúšky.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.